

Program

Program is also available in Google Calendar [ical]

Conference proceedings are available on Springer website.

Recordings available on YouTube.

 Show abstracts

WEDN ESDAY 26. 08 . 2020

14:00 - 14:30 Opening

14:30 - 15:30

[video]

[video]

[video]

[Slack channel]

Multicore and Manycore Parallelism (A)

Chairs: Witold Rudnicki

NVPhTM: An Efficient Phase-Based Transactional System for Non-

Volatile Memory

Alexandro Baldassin, Rafael Murari, João Paulo Carvalho, Guido Araujo,
Daniel Castro, João Barreto and Paolo Romano

Download paper from Springer LNCS.

Non-Volatile Memory (NVM) is an emerging memory technology aimed to

eliminate the gap between main memory and stable storage. Nevertheless,

today’s programs will not readily benefit from NVM because crash failures

may render the program in an unrecoverable and inconsistent state. In this

context, the use of durable transactions has been proposed so as to ease

the adoption of NVM. It leverages on the well-know semantics of database

transactions to simplify the task of programming NVM systems. This is

achieved by logging NVM writes using software (SW) or hardware (HW)

transaction primitives. Although SW transactions are flexible and

unbounded, they may significantly hurt the performance of short-lived

transactions. On the other hand, HW transactional memories provide low-

overhead but are resource-constrained. In this paper we present NVPhTM, a

transactional system for NVM that delivers the best out of both HW and SW

transactions by dynamically selecting the best execution mode according

to the application's characteristics. NVPhTM is comprised of a set of

heuristics to guide online phase transition. Furthermore, a careful design of

the phase transition step is devised to guarantee persistency when

transitioning between HW and SW phases. To the best of our knowledge,

NVPhTM is the first phase-based system to provide durable transactions.

Experimental results with the STAMP benchmark show that the proposed

heuristics are efficient in guiding phase transitions with low overhead. In

particular, the NVM-aware heuristics provided an average speedup of up to

10\% when compared to a system using NVM-oblivious heuristics, with only

1\% of transition overhead in the worst case.

Enhancing Resource Management through Prediction-based Policies

Antoni Navarro, Arthur F. Lorenzon, Eduard Ayguadé and Vicenç Beltran

Download paper from Springer LNCS.

Task-based programming models are emerging as a promising alternative

to make the most of multi-/many-core systems. These programming

models rely on runtime systems, and their goal is to improve application

performance by properly scheduling application tasks to cores. Additionally,

these runtime systems offer policies to cope with application phases that

lack in parallelism to fill all cores. However, these policies are usually static

and favor either performance or energy efficiency. In this paper, we have

extended a task-based runtime system with a lightweight monitoring and

prediction infrastructure that dynamically predicts the optimal number of

cores required for each application phase, thus improving both

performance and energy efficiency. Through the execution of several

benchmarks in multi-/many-core systems, we show that our prediction-

based policies have competitive performance while improving energy

efficiency when compared to state of the art policies.

Accelerating Overlapping Community Detection: Performance Tuning a

Stochastic Gradient Markov Chain Monte Carlo Algorithm

Ismail Elhelw, Rutger Hofman and Henri Bal
Download paper from Springer LNCS.

Building efficient algorithms for data-intensive problems requires deep

analysis of data access patterns. Random data access patterns exacerbate

this process. In this paper, we discuss accelerating a randomized data-

intensive machine learning algorithm using multi-core CPUs and several

GPUs. A thorough analysis of the algorithm’s data dependencies enabled a

75% reduction in its memory footprint. We created custom compute

kernels via code generation to identify the optimal set of data placement

and computational optimizations per compute device. An empirical

evaluation shows up to 245x speedups compared to an optimized

sequential version. Another result from this evaluation is that achieving

peak performance does not always match intuition: e.g., depending on the

GPU architecture, vectorization may increase or hamper performance.

[video]

[video]

[video]

[Slack channel]

Cluster, Cloud and Edge Computing (B)

Chairs: Paweł Czarnul

TorqueDB: Distributed Querying of Time-series Data from Edge-local

Storage

Dhruv Garg, Prathik Shirolkar, Anshu Shukla and Yogesh Simmhan

Download paper from Springer LNCS.

The rapid growth in edge computing devices as part of Internet of Things

(IoT) allows real-time access to time-series data from 1000's of sensors.

Such observations are queried to optimize the health of the infrastructure.

Recently, edge-local storage are helping retain data on the edge rather than

move them centrally to the cloud. However, such systems do not support

flexible querying over the data spread across 10--100's of devices. There is

also a lack of distributed time-series databases that can run on the edge

devices. Here, we propose TorqueDB, a distributed query engine over time-

series data that operates on edge and fog resources. TorqueDB leverages

our prior work on ElfStore, a distributed edge-local file store, and InfluxDB, a

time-series database, to enable temporal queries to be decomposed and

executed across multiple fog and edge devices. Interestingly, we move data

into InfluxDB on-demand while retaining the durable data within ElfStore for

use by other applications. We also design a cost model that maximizes

parallel movement and execution of the queries across resources, and

utilizes caching. Our experiments on a real edge, fog and cloud deployment

show that TorqueDB performs comparable to InfluxDB on a cloud VM for a

smart city query workload, but without the associated costs.

Data-Centric Distributed Computing on Networks of Mobile Devices

Pedro Sanches, João A. Silva, António Teófilo and Hervé Paulino

Download paper from Springer LNCS.

In the last few years we have seen a significant increase both in the number

and capabilities of mobile devices, as well as in the num- ber of applications

that need more and more computing and storage re- sources. Currently, in

order to deal with this growing need for resources, applications make use of

cloud services. This brings some problems: high latencies, considerable use

of energy and bandwidth, and the unavail- ability of connectivity

infrastructures. Given this context, for some ap- plications it makes sense to

do part, or all, of the computing locally on the mobile devices themselves. In

this paper we present Oregano, a framework for distributed computing on

mobile devices. Oregano is capable of processing sets or streams of data

generated on mobile de- vice networks, without requiring centralized

services. Contrary to the current state of the art, where computing and data

are sent to worker mobile devices, our Oregano performs the computation

where the data is located, significantly reducing the amount of data

exchanged.

WPSP: a multi-correlated weighted policy for VM selection and

migration for Cloud computing

Sergi Vila Almenara, Josep Lluis Lerida, Fernando Cores, Fernando Guirado
and Fabio Verdi
Download paper from Springer LNCS.

Using virtualization, cloud environments satisfy dynamically the

computational resource necessities of the user. The dynamic use of the

resources determines the demand of working hosts. Through virtual

machine (VM) migrations, datacenters perform load balancing to optimise

the resource usage and solve saturation. In this work, a policy, named as

WPSP (Weighted Pearson Selection Policy), is implemented to choose which

virtual machines are more suitable to be migrated. The policy evaluates, for

each VM, both the CPU load and the Network traffic influence on the

assigned host. The corresponding Pearson correlation coefficients are

calculated for each one of the VMs and then weighted in order to provide a

relationship between the values and the host behaviour. The main goal is to

clearly identify and then migrate the VMs that are responsible of the Host

saturation but also considering their communications. Using the CloudSim

simulator, the policy is compared with the rest of heuristic techniques in the

literature, resulting in a reduction of 85% in the number of migrations, and

thus reducing the use of bandwidth (6%), network saturation (24%) and

over-saturated hosts (50%). Additionally, it is presented an improved VM

allocation technique to reduce the distance the VMs must travel in order to

be migrated, obtaining an average reduction of 43% in the quantity of

migrated data.

15:30 - 16:00 Break

16:00 - 17:20

[video]

[video]

[video]

[video]

[Slack channel]

[Slack channel]

Support Tools and Environments (A)

Chairs: Bartosz Baliś

Skipping Non-essential Instructions Makes Data-dependence Profiling

Faster

Nicolas Morew, Mohammad Norouzi, Ali Jannesari and Felix Wolf

Download paper from Springer LNCS.

Data-dependence profiling is a dynamic program-analysis technique to

discover potential parallelism in sequential programs. Unlike purely static

analysis, which may overestimate the number of dependences because it

does not know many pointers values and array indices at compile time,

profiling has the advantage of recording data dependences that actually

occur at runtime. But it has the disadvantage of significantly slowing down

program execution, often by a factor of 100. In our earlier work, we lowered

the overhead of data-dependence profiling by excluding polyhedral loops,

which can be handled statically using certain compilers. However, neither

does every program contain polyhedral loops, nor are statically identifiable

dependences restricted to such loops. In this paper, we introduce an

orthogonal approach, focusing on data dependences between accesses to

scalar variables - across the entire program, inside and outside loops. We

first analyze the program statically and identify memory-access instructions

that create data dependences that would appear in any execution of these

instructions. Then, we exclude these instructions from instrumentation,

allowing the profiler to skip them at runtime and avoid the associated

overhead. We evaluate our approach with 49 benchmarks from three

benchmark suites. We improved the profiling time of all programs by at least

38%, with a median reduction of 61% across all the benchmarks.

A toolchain to verify the parallelization of OmpSs-2 applications

Simone Economo, Sara Royuela Alcázar, Eduard Ayguadé Parra and Vicenç
Beltran Querol
Download paper from Springer LNCS.

Programming models for task-based parallelization based on compile-time

directives are very effective at uncovering the parallelism available in HPC

applications. Despite that, the process of correctly annotating complex

applications is error-prone and may hinder the general adoption of these

models. In this paper, we target the OmpSs-2 programming model and

present a novel toolchain able to detect parallelization errors coming from

non-compliant OmpSs-2 applications. Our toolchain verifies the compliance

with the OmpSs-2 programming model using local task analysis to deal with

each task separately, and structural induction to extend the analysis to the

whole program. To improve the effectiveness of our tools, we also

introduce some ad-hoc verification annotations, which can be used

manually or automatically to disable the analysis of specific code regions.

Experiments run on a sample of representative kernels and applications

show that our toolchain can be successfully used to verify the parallelization

of complex real-world applications.

High Performance Architectures and Compilers (A)

Chairs: Bartosz Baliś

Modelling Standard and Randomized Slimmed Folded Clos Networks

Cristóbal Camarero, Carmen Martinez, Ramon Beivide and Javier Corral
Download paper from Springer LNCS.

Fat-trees (FTs) are widely known topologies that, among other advantages,

provide full bisection bandwidth. However, many implementations of FTs

are made slimmed to cheapen the infrastructure, since most applications

do not make use of this full bisection bandwidth. In this paper Extended

Generalized Random Folded Clos (XGRFC) interconnection networks are

introduced as cost-efficient alternatives to Extended Generalized Fat Trees

(XGFT), which is a widely used topological description for slimmed FTs. This is

proved both by obtaining a theoretical model of the performance and

evaluating it using simulation. Among the results, it is shown that a XGRFC is

able to connect 20k servers with 27% less routers than the corresponding

XGFT and still providing the same performance under uniform traffic.

OmpMemOpti: Optimized Memory Movement for Heterogeneous

Computing

Prithayan Barua, Jisheng Zhao and Vivek Sarkar

Download paper from Springer LNCS.

The fast development of acceleration architectures and applications has

made heterogeneous computing the norm for high-performance

computing. The cost of high volume data movement to the accelerators is

an important bottleneck both in terms of application performance and

developer productivity. Memory management is still a manual task

performed tediously by expert programmers. In this paper, we develop a

compiler analysis to automate memory management for heterogeneous

computing. We propose an optimization framework that casts the problem

of detection and removal of redundant data movements into a partial

redundancy elimination (PRE) problem and applies the lazy code motion

technique to optimize it. We chose OpenMP as the underlying parallel

programming model and implemented our optimization framework in the

LLVM toolchain. We evaluated it with ten benchmarks and obtained a

geometric speedup of 2.3\times, and reduced on average 50\% of the

total bytes transferred between the host-GPU.

[video]

[video]

[video]

[video]

[Slack channel]

Scheduling and Load Balancing (B)

Chairs: Joanna Berlińska

Parallel Scheduling of Data-Intensive Tasks

Xiao Meng and Lukasz Golab

Download paper from Springer LNCS.

Workloads with precedence constraints due to data dependencies are

common in various applications. These workloads can be represented as

directed acyclic graphs (DAG), and are often data-intensive, meaning that

data loading costs are the dominant factor and thus cache misses should

be minimized. We address the problem of parallel scheduling of a DAG of

data-intensive tasks to minimize makespan. To do so, we propose greedy

online scheduling algorithms that take load balancing, data dependencies,

and data locality into account. Simulations and an experimental evaluation

using an Apache Spark cluster demonstrate the advantages of our

solutions.

A Makespan Lower Bound for the Scheduling of the Tiled Cholesky

Factorization based on ALAP scheduling

Olivier Beaumont, Julien Langou, Willy Quach and Alena Shilova

Download paper from Springer LNCS.

Due to the advent of multicore architectures and massive parallelism, the

tiled Cholesky factorization algorithm has recently received plenty of

attention and is often referenced by practitioners as a case study. It is also

implemented in mainstream dense linear algebra libraries and is used as a

testbed for runtime systems. However, we note that theoretical study of the

parallelism of this algorithm is currently lacking. In this paper, we present new

theoretical results about the tiled Cholesky factorization in the context of a

parallel homogeneous model without communication costs. Based on the

relative costs of involved kernels, we prove that only two different situations

must be considered, typically corresponding to CPU and GPU costs. By a

careful analysis on the number of tasks of each type that run

simultaneously in the ALAP (As Late As Possible) schedule without resource

limitation, we are able to determine precisely the number of busy

processors at any time (as degree 2 polynomials). We then use this

information to find a closed form formula for the minimum time to schedule

a tiled Cholesky factorization of size n on p processors. We show that this

bound outperforms classical bounds from the literature. We also prove that

ALAP(p), an ALAP-based schedule where the number of resources is limited

to p, has a makespan extremely close to the lower bound, thus proving both

the effectiveness of ALAP(p) schedule and of the lower bound on the

makespan.

Optimal GPU-CPU Offloading Strategies for Deep Neural Network

Training

Olivier Beaumont, Lionel Eyraud-Dubois and Alena Shilova

Download paper from Springer LNCS.

Training Deep Neural Networks is known to be an expensive operation, both

in terms of computational cost and memory load. Indeed, during training, all

intermediate layer outputs (called activations) computed during the

forward phase must be stored until the corresponding gradient has been

computed in the backward phase. These memory requirements

sometimes prevent to consider larger batch sizes and deeper networks, so

that they can limit both convergence speed and accuracy. Recent works

have proposed to offload some of the computed forward activations from

the memory of the GPU to the memory of the CPU. This requires to

determine which activations should be offloaded and when these transfers

from and to the memory of the GPU should take place. We prove that this

problem is NP-hard in the strong sense, and we propose two heuristics

based on relaxations of the problem. We perform extensive experimental

evaluation on standard Deep Neural Networks. We compare the

performance of our heuristics against previous approaches from the

literature, showing that they achieve much better performance in a wide

variety of situations.

Improving mapping for sparse direct solvers: A trade-off between data

locality and load balancing

Changjiang Gou, Ali Al Zoobi, Anne Benoit, Mathieu Faverge, Loris Marchal,
Grégoire Pichon and Pierre Ramet

Download paper from Springer LNCS.

In order to express parallelism, parallel sparse direct solvers take advantage

of the elimination tree to exhibit tree-shaped task graphs, where nodes

represent computational tasks and edges represent data dependencies.

One of the pre-processing stages of sparse direct solvers consists of

mapping computational resources (processors) to these tasks. The

objective is to minimize the factorization time by exhibiting good data

locality and load balancing. The proportional mapping technique is a widely

used approach to solve this resource-allocation problem. It achieves good

data locality by assigning the same processors to large parts of the

elimination tree. However, it may limit load balancing in some cases. In this

paper, we propose a dynamic mapping algorithm based on proportional

mapping. This new approach relaxes the data locality criterion to improve

load balancing. In order to validate the newly introduced method, we

perform extensive experiments on the PASTIX sparse direct solver. It

demonstrates that our algorithm enables better static scheduling of the

numerical factorization while keeping good data locality.

17:20 - 17:30 Break

17:30 - 18:20

[Slack channel]

Keynote Ewa Deelman (A)

Automating Science Workflows:Challenges and Opportunities

Chair: Rizos Sakellariou

Abstract available on keynotes page

18:20 - 19:00 Welcome reception

T HURSDAY 27. 08 . 2020

13:00 - 14:30

[Slack channel]

industry: Huawei (A)

Details available on "industry: Huawei" page

14:30 - 15:00

[video]

[Slack channel]

Best paper (A)

Chairs: Morris Riedel

Maximizing I/O Bandwidth for Reverse Time Migration on Heterogeneous Large-Scale Systems

Tariq Alturkestani, Hatem Ltaief and David Keyes

Download paper from Springer LNCS.

Reverse Time Migration (RTM) is an important scientific application for oil and gas exploration. The 3D RTM simulation generates terabytes of intermediate

data that does not fit in main memory. In particular, RTM has two successive computational phases, i.e., the forward modeling and the backward

propagation, that necessitate to write and then to read the state of the computed solution grid at specific time steps of the time integration. Advances in

memory architecture have made it feasible and affordable to integrate hierarchical storage media on large-scale systems, starting from the traditional

Parallel File Systems (PFS) to intermediate fast disk technologies (e.g., node-local and remote-shared Burst Buffer) and up to CPU main memory. To

address the trend of heterogeneous HPC systems deployment, we introduce an extension to our Multilayer Buffer System (MLBS) framework to further

maximize RTM I/O bandwidth in presence of GPU hardware accelerators. The main idea is to leverage the GPU’s High Bandwidth Memory (HBM) as an

additional storage media layer. The objective of MLBS is ultimately to hide the application’s I/O overhead by enabling a buffering mechanism operating

across all the hierarchical storage media layers. MLBS is therefore able to sustain the I/O bandwidth at each storage media layer. By asynchronously

performing expensive I/O operations and creating opportunities for overlapping data motion with computations, MLBS may transform the original I/O

bound behavior of the RTM application into a compute-bound regime. In fact, the prefetching strategy of MLBS allows the RTM application to believe that

it has access to a larger memory capacity on the GPU, while transparently performing the necessary housekeeping across the storage layers. We

demonstrate the effectiveness of MLBS on the Summit supercomputer using 2048 compute nodes equipped with a total of 12288 GPUs by achieving up

to 1.4X performance speedup compared to the reference PFS-based RTM implementation for large 3D solution grid.

15:00 - 15:30

[video]

Best artifact (A)

Chairs: Maciej Szpindler

A Prediction Framework for Fast Sparse Triangular Solves

Najeeb Ahmad, Buse Yilmaz and Didem Unat

Download paper from Springer LNCS.

Sparse triangular solve (SpTRSV) is an important linear algebra kernel, finding extensive uses in numerical and scientific computing. The parallel

implementation of SpTRSV is a challenging task due to the sequential nature of the steps involved. This makes it, in many cases, one of the most time-

consuming operations in an application. Many approaches for efficient SpTRSV on CPU and GPU systems have been proposed in the literature. However,

no single implementation or platform (CPU or GPU) gives the fastest solution for all input sparse matrices. In this work, we propose a machine learning-

based framework to predict the SpTRSV implementation giving the fastest execution time for a given sparse matrix based on its structural features. The

framework is tested with six SpTRSV implementations on a state-of-the-art CPU-GPU machine (Intel Xeon Gold CPU, NVIDIA V100 GPU). Experimental

results, with 998 matrices taken from the SuiteSparse Matrix Collection, show the classifier prediction accuracy of 87% for the fastest SpTRSV algorithm

for a given input matrix. Predicted SpTRSV implementations achieve average speedups (harmonic mean) in the range of 1.2-2.4x against the six SpTRSV

implementations used in the evaluation.

15:30 - 15:40 Break

15:40 - 16:40

[video]

[video]

[video]

[Slack channel]

Data Management, Analytics and Machine Learning (A)

Chairs: Morris Riedel

Accelerating Deep Learning Inference with Cross-Layer Data Reuse on

GPUs

Xueying Wang, Guangli Li, Xiao Dong, Jiansong Li, Lei Liu and Xiaobing Feng

Download paper from Springer LNCS.

Accelerating the deep learning inference is very important for real-time

applications. In this paper, we propose a novel method to fuse the layers of

convolutional neural networks (CNNs) on Graphics Processing Units (GPUs),

which applies data reuse analysis and access optimization in different levels

of the memory hierarchy. To achieve the balance between computation

and memory access, we explore the fu- sion opportunities in the CNN

computation graph and propose three fusion modes of convolutional

neural networks: straight, merge and split. Then, an approach for generating

efficient fused code is designed, which goes deeper in multi-level memory

usage for cross-layer data reuse. The effectiveness of our method is

evaluated with the structures from state- of-the-art CNNs on two different

GPU platforms, NVIDIA TITAN Xp and Tesla P4. The experiments show that

the average speedup is 2.02 × on representative structures of CNNs, and

1.57× on end-to-end inference of SqueezeNet.

Optimizing FFT-based convolution on ARMv8 multi-core CPUs

Qinglin Wang, Dongsheng Li, Xiandong Huang, Siqi Shen, Songzhu Mei and
Jie Liu

Download paper from Springer LNCS.

Convolutional Neural Networks (CNNs) are widely applied in various

machine learning applications and very time-consuming. Most of CNNs'

execution time is consumed by convolutional layers. A common approach

to implementing convolutions is the FFT-based one, which can reduce the

arithmetic complexity of convolutions without losing too much precision. As

the performance of ARMv8 multi-core CPUs improves, they can also be

utilized to perform CNNs like Intel X86 CPUs. In this paper, we present a new

parallel FFT-based convolution implementation on ARMv8 multi-core CPUs.

The implementation makes efficient use of ARMv8 multi-core CPUs through

a series of computation and memory optimizations. The experiment results

on two ARMv8 multi-core CPUs demonstrate that our new implementation

gives much better performance than two existing approaches in most

cases.

Distributed Fine-Grained Traffic Speed Prediction for Large-Scale

Transportation Networks based on Automatic LSTM Customization and

Sharing

Ming-Chang Lee, Jia-Chun Lin and Ernst Gunnar Gran

Download paper from Springer LNCS.

Short-term traffic speed prediction has been an important research topic in

the past decade, and many approaches have been introduced. However,

providing fine-grained, accurate, and efficient traffic-speed prediction for

large-scale transportation networks where numerous traffic detectors are

deployed has not been well studied. In this paper, we propose DistPre, which

is a distributed fine-grained traffic speed prediction scheme for large-scale

transportation networks. To achieve fine-grained and accurate traffic-

speed prediction, DistPre customizes a Long Short-Term Memory (LSTM)

model with an appropriate hyperparameter configuration for a detector. To

make such customization process efficient and applicable for large-scale

transportation networks, DistPre conducts LSTM customization on a cluster

of computation nodes and allows any trained LSTM model to be shared

between different detectors. If a detector observes a similar traffic pattern

to another one, DistPre directly shares the existing LSTM model between

the two detectors rather than customizing an LSTM model per detector.

Experiments based on traffic data collected from freeway I5-N in California

are conducted to evaluate the performance of DistPre. The results

demonstrate that DistPre provides time-efficient LSTM customization and

accurate fine-grained traffic-speed prediction for large-scale

transportation networks.

[video]

[video]

[video]

[Slack channel]

Accelerator Computing (B)

Chairs: Łukasz Szustak

cuDTW++: Ultra-Fast Dynamic Time Warping on CUDA-enabled GPUs

Bertil Schmidt and Christian Hundt

Download paper from Springer LNCS.

Dynamic Time Warping (DTW) is a widely used distance measure in the field

of time series data mining. However, calculation of DTW scores is compute-

intensive since the complexity is quadratic in terms of time series lengths.

This renders important data mining tasks computationally expensive even

for moderate query lengths and database sizes. Previous solutions to

accelerate DTW on GPUs are not able to fully exploit their compute

performance due to inefficient memory access schemes. In this paper, we

introduce a novel parallelization strategy to drastically speed-up DTW on

CUDA-enabled GPUs based on using low latency warp intrinsics for fast inter-

thread communication. We show that our CUDA parallelization (cuDTW++) is

able to achieve over 90% of the theoretical peak performance of modern

Volta-based GPUs, thereby clearly outperforming the previously fastest

CUDA implementation (cudaDTW) by over one order-of-magnitude.

Furthermore, cuDTW++ achieves two-to-three orders-of-magnitude

speedup over the state-of-the-art CPU program UCR-Suite for

subseqeunce search of ECG signals. We plan to make cuDTW++ publicly

available upon acceptance of this paper.

Heterogeneous CPU+iGPU Processing for Efficient Epistasis Detection

Rafael Campos, Diogo Marques, Sergio Santander-Jiménez, Leonel Sousa
and Aleksandar Ilic

Download paper from Springer LNCS.

Epistasis detection represents a fundamental problem in bio-medicine to

understand the reasons for occurrence of complex phenotypic traits

(diseases) across a population of individuals. Exhaustively examining all

possible interactions of multiple Single-Nucleotide Polymorphisms provides

the most reliable way to identify accurate solutions, but it is both

computationally and memory intensive task. To tackle this challenge, this

work proposes a modular and self-adaptive framework for high-

performance and energy-efficient epistasis analysis on modern tightly-

coupled heterogeneous platforms composed of multi-core CPUs and

integrated GPUs. To fully exploit the capabilities of these systems, the

proposed framework incorporates both task- and data-parallel approaches

specifically tailored to enhance single and multi-objective epistasis

detection on each device architecture, along with allowing efficient

collaborative execution across all devices. The experimental results show

the ability of the proposed framework to handle the heterogeneity of an

Intel CPU+iGPU system, achieving performance and energy-efficiency gains

of up to 5x and 6x in different parallel execution scenarios.

SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for

Heterogeneous Computing

Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch,
Nicolai Stawinoga, Peter Thoman, Thomas Fahringer and Vincent Heuveline

Download paper from Springer LNCS.

The SYCL standard promises to enable high productivity in heterogeneous

programming of a broad range of parallel devices, including multicore CPUs,

GPUs, and FPGAs. Its modern and expressive C++ API design, as well as

flexible task graph execution model give rise to ample optimization

opportunities at run-time, such as the overlapping of data transfers and

kernel execution. However, it is not clear which of the existing SYCL

implementations perform such scheduling optimizations, and to what

extent. Furthermore, SYCL's high level of abstraction may raise concerns

about sacrificing performance for ease of use. Benchmarks are required to

accurately assess the performance behavior of high-level programming

models such as SYCL. To this end, we present SYCL-Bench, a versatile

benchmark suite for device characterization and runtime benchmarking,

written in SYCL. We experimentally demonstrate the effectiveness of SYCL-

Bench by performing device characterization of the NVIDIA TITAN X GPU,

and by evaluating the efficiency of the hipSYCL and ComputeCpp SYCL

implementations.

16:40 - 17:00 Break

17:00 - 18:00

[Slack channel]

Keynote Geoffrey Fox (A)

Advancing Science with Deep Learning, HPC, Data Benchmarks and Data Engineering

Chair: Christan Lengauer

Abstract available on keynotes page

18:00 - 19:10

[video]

[video]

[video]

[Slack channel]

Parallel Numerical Methods and Applications (A)

Chairs: Hatem Ltaief

Efficient Ephemeris Models for Spacecraft Trajectory Simulations on

GPUs

Fabian Schrammel, Florian Renk, Arya Mazaheri and Felix Wolf

Download paper from Springer LNCS.

When a spacecraft is released into space, its start condition and future

trajectory in terms of position and speed cannot be precisely predicted. To

ensure that the object does not violate space debris mitigation or planetary

protection standards, such that it causes potential damage or

contamination of celestial bodies, spacecraft-mission designers conduct a

multitude of simulations to verify the validity of the set of all probable

trajectories. Such simulations are usually independent, making them a

perfect match for parallelization. The European Space Agency (ESA)

developed a GPU-based simulator for the exact purpose and achieved

reasonable speedups in comparison with the established multi-threaded

CPU version. However, we noticed that the performance starts to degrade

as the spacecraft trajectories diverge in time. Our empirical analysis using

GPU profilers showed that the application suffers from poor data locality

and high memory traffic. In this paper, we propose an alternative data

layout, which increases data locality within thread blocks. Furthermore, we

introduce alternative model configurations that lower both algorithmic

effort and the number of memory requests without violating accuracy

requirements. Our experiments show that our method is able to achieve

speedups of up to 2.6x.

Multiprecision block-Jacobi for Iterative Triangular Solves

Fritz Goebel, Hartwig Anzt, Terry Cojean, Goran Flegar and Enrique S.
Quintana-Orti
Download paper from Springer LNCS.

Recent research efforts have shown that Jacobi and block- Jacobi

relaxation methods can be used as an effective and highly parallel

approach for the solution of sparse triangular linear systems arising in the

application of ILU-type preconditioners. Simultaneously, a few orthogonal

(independent) works have focused on designing efficient high performance

adaptive-precision block-Jacobi preconditioning (block-diagonal scaling), in

the context of the iterative solution of sparse linear systems, on manycore

architectures. In this paper, we bridge the gap between relaxation methods

based on regular splittings and preconditioners by demonstrating that

iterative refinement can be leveraged to construct a relaxation method

from the preconditioner. In addition, we exploit this insight to construct a

highly-efficient sparse triangular system solver for graphics processors that

combines iterative refinement with the block- Jacobi preconditioner

available in the Ginkgo library.

Parallel Finite Cell Method with Adaptive Geometric Multigrid

S. Saberi, A. Vogel and G. Meschke

Download paper from Springer LNCS.

The generation of appropriate computational meshes in the context of

numerical methods for partial differential equations is technical and

laborious and has motivated a class of advanced discretization methods

commonly referred to as unfitted finite elements. To this end, the finite cell

method (FCM) combines high-order FEM, adaptive quadrature integration

and weak imposition of boundary conditions to embed a physical domain

into a structured background mesh. While unfortunate cut configurations in

unfitted finite element methods lead to severely ill-conditioned system

matrices that pose challenges to iterative solvers, such methods allow for

optimized data patterns and for a scalable implementation. In this work, we

employ linear octrees for handling the FCM discretization that allow for

parallel scalability, adaptive refinement and efficient computation on the

commonly regular background grid. We present a parallel adaptive

geometric multigrid with Schwarz smoothers for the solution of the

resultant system of the Laplace operator. We focus on exploiting the

hierarchical nature of space tree data structures for the generation of the

required multigrid spaces and discuss scalable and robust extension of the

methods across process interfaces. We present both weak and strong

scaling of our implementation up to a billion degrees of freedom on

distributed-memory clusters.

[video]

[video]

[video]

[video]

[Slack channel]

Parallel and Distributed Programming, Interfaces, and Languages (B)

Chairs: Phil Trinder

Managing Failures in task-based parallel workflows in distributed

computing environments

Jorge Ejarque, Marta Bertran, Javier Álvarez Cid-Fuentes, Javier Conejero
and Rosa M. Badia

Download paper from Springer LNCS.

Current scientific workflows are large and complex. They normally perform

thousands of simulation whose results combined with searching and data

analytics algorithms, in order to infer new knowledge, generate a very large

amount of data. To this end, workflows are composed by large amounts of

tasks from which is very likely that, at least, one of them fails. Most of the

work done about failure management in workflow managers and runtimes

focuses on recovering from failures caused by resources (retrying or

resubmitting the failed computation in other resources, etc.) However,

some of these failures can be caused by the application itself (corrupted

data, algorithms which are not converging, etc.), and these fault tolerance

mechanisms are not sufficient to perform a successful workflow execution.

In these cases, the developer has to add some code in their applications to

prevent and manage the possible failures. In this paper, we propose a simple

interface and a set of transparent runtime mechanism to simplify how

scientists deal with application-based failures in task-based parallel

workflows. We have validated our proposal with a set of e-science use cases

to show the benefits of the proposed interface and mechanism in terms of

programming productivity and performance.

Accelerating Nested Data Parallelism: Preserving Regularity

Lars B. van den Haak, Trevor L. McDonell, Gabriele K. Keller and Ivo Gabe de
Wolff

Download paper from Springer LNCS.

Irregular nested data-parallelism is a powerful programming model which

enables the expression of a large class of parallel algorithms. However, it is

notoriously difficult to compile such programs to efficient code for modern

parallel architectures. Regular data-parallelism, on the other hand, is much

easier to compile to efficient code, but too restricted to express some

problems conveniently or in a manner to exploit the full parallelism. We

extend the regular data-parallel programming model to allow for the

parallel execution of array level conditionals and iterations over irregular

nested structures. We present two novel static analyses to optimise the

code generation to reduce the costs of this more powerful irregular model.

We present benchmarks to support our claim that these extensions are

effective as well as feasible, as they enable to exploit the full parallelism of an

important class of algorithms, and together with our optimisations lead to

an improvement in absolute performance over an implementation limited

to exploiting only regular parallelism.

Using Dynamic Broadcasts to improve Task-Based Runtime

Performances

Alexandre Denis, Emmanuel Jeannot, Philippe Swartvagher and Samuel
Thibault

Download paper from Springer LNCS.

Task-based runtimes have emerged in the HPC world to take benefit from

the computation power of heterogeneous supercomputers and to achieve

scalability. One of the main bottlenecks for scalability is the communication

layer. Some task-based algorithms need to send the same data to multiple

nodes. To optimize this communication pattern, libraries propose dedicated

routines, such as MPI_Bcast. However, MPI_Bcast requirements do not fit

well with the constraints of task-based runtime systems: it must be

performed simultaneously by all involved nodes, and these must know each

other, which is not possible when each node runs a task scheduler not

synchronized with others. In this paper, we propose a new approach, called

dynamic collectives to overcome these constraints. The broadcast

communication pattern required by the task-based algorithm is detected

automatically, then the broadcasting algorithm relies on active messages

and source routing, so that participating nodes do not need to know each

other and don't need to synchronize. Receiver receives data the same way

as it receives point-to-point communication, without having to know it

arrives through a collective. We have implemented the algorithm in the

StarPU runtime system using the NewMadeleine communication library. We

performed benchmarks using the Cholesky factorization that is known to

use broadcasts and observed a sensible improvement of its performance.

A Compression-Based Design for Higher Throughput in a Lock-Free

Hash Map

Pedro Moreno, Miguel Areias and Ricardo Rocha

Download paper from Springer LNCS.

Lock-free implementation techniques are known to improve the overall

throughput of concurrent data structures. A hash map is an important data

structure used to organize information that must be accessed frequently. A

key role of a hash map is the ability to balance workloads by dynamically

adjusting its internal data structures in order to provide the fastest possible

access to the information. This work extends a previous lock-free hash-trie

map design to also support \emph{lock-free compression}. The main goal is

to significantly reduce the depth of the internal hash levels within the hash

map, in order to minimize cache misses and increase the overall throughput.

To materialize our design, we redesigned the existent search, insert, remove

and expand operations in order to maintain the lock-freedom property of

the whole design. Experimental results show that lock-free compression

effectively improves the search operation and, in doing so, it outperforms

the previous design, which was already quite competitive.

FRIDAY 28 . 08 . 2020

13:00 - 14:45

[Slack channel]

industry: IBM (A)

14:45 - 15:00 Break

15:00 - 15:50

[Slack channel]

Keynote Piotr Sankowski (A)

Breaking the PRAM O(log n) complexity bounds on MPC

Abstract available on keynotes page

15:50 - 16:00 Break

16:00 - 17:00

[video]

[video]

[video]

[Slack channel]

Theory and Algorithms for Parallel and Distributed Processing (A)

Chairs: Marek Klonowski

On the Power of Randomization in Distributed Algorithms in Dynamic

Networks with Adaptive Adversaries

Irvan Jahja, Haifeng Yu and Ruomu Hou

Download paper from Springer LNCS.

This paper investigates the power of randomization in general distributed

algorithms in dynamic networks where the network's topology may evolve

over time, as determined by some adaptive adversary. In such a context,

randomization may help algorithms to better deal with i) "bad" inputs to the

algorithm, and ii) "bad" evolving topologies generated by the adaptive

adversary. We prove that randomness offers limited power to better deal

with "bad" evolving topologies. We define a simple notion of prophetic

adversary for determining the evolving topologies. Such an adversary

accurately predicts all randomness in the algorithm beforehand, and hence

the randomness will be useless against "bad" prophetic adversaries. We

prove that subject to some mild conditions, we can always convert a

randomized algorithm P to a new algorithm Q with comparable time

complexity, even when Q runs against prophetic adversaries. This implies

that the benefit of P using randomness for dealing with the adaptive

adversaries is limited.

LCP-Aware Parallel String Sorting

Jonas Ellert, Johannes Fischer and Nodari Sitchinava

Download paper from Springer LNCS.

When lexicographically sorting strings, it is not always necessary to inspect

all symbols. For example, the lexicographical rank of "europar" amongst the

strings "eureka", "eurasia", and "excells" only depends on its so called relevant

prefix "euro". The distinguishing prefix size D of a set of strings is the number

of symbols that actually need to be inspected to establish the

lexicographical ordering of all strings. Efficient string sorters should be D-

aware, i.e. their complexity should depend on D rather than on the total

number N of all symbols in all strings. While there are many D-aware sorters

in the sequential setting, there appear to be no such results in the PRAM

model. We propose a framework yielding a D-aware modification of any

existing PRAM string sorter. The derived algorithms are work-optimal with

respect to their original counterpart: If the original algorithm requires

O(w(N)) work, the derived one requires O(w(D)) work. The execution time

increases only by a small factor that is logarithmic in the length of the

longest relevant prefix. Our framework universally works for deterministic

and randomized algorithms in all variations of the PRAM model, such that

future improvements in (D-unaware) parallel string sorting will directly result

in improvements in D-aware parallel string sorting.

Mobile RAM and Shape Formation by Programmable Particles

Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta
and Yukiko Yamauchi
Download paper from Springer LNCS.

In the distributed model Amoebot of programmable matter, the

computational entities, called particles, are anonymous finite-state

machines that operate and move on an hexagonal tasselation of the plane.

In this paper we show how a constant number of such weak particles can

simulate a powerful Turing-complete entity that is able to move on the

plane while computing. We then show an application of our tool to the

classical Shape-Formation problem, providing a new much more general

distributed solution. Indeed, while the existing algorithms allow to form only

shapes made of arrangements of segments and triangles, our algorithm

allows the particles to form also more abstract and general con- nected

shapes, including circles and spirals, as well as fractal objects of non-integer

dimension. In lieu of the existing impossibility results based on the symmetry

of the initial configuration of the particles, our result provides a complete

characterization of the connected shapes that can be formed by an initially

simply connected set of particles. Furthermore, in the case of non-

connected shapes, we give almost-matching necessary and sufficient

conditions for their formability.

[video]

[video]

[video]

[Slack channel]

Performance and Power Modeling, Prediction and Evaluation (B)

Chairs: Arnaud Legrand

Operation-Aware Power Capping

Bo Wang, Christian Terboven, Matthias Mueller and Julian Miller

Download paper from Springer LNCS.

Once the peak power draw of a large-scale high-performance-computing

(HPC) cluster exceeds the capacity of its surrounding infrastructures, the

cluster's power consumption needs to be capped to avoid hardware

damage. However, power capping often causes a computational

performance loss because the underlying processors are clocked down. In

this work, we developed an operation-aware management strategy, called

OAM, to mitigate the performance loss. OAM manages performance under

a power cap dynamically at runtime by modifying the core and uncore clock

rate. Using this approach, the limited power budget can be shifted

effectively and optimally among components within a processor. The

components with high computation activities are powered up while the

others are throttled. The overall execution performance is improved.

Employing the OAM on diverse HPC benchmarks and real-world

applications, we observed that the hardware settings adjusted by OAM are

having near to the optimal results of the static-setting approach. The

achieved speedup in our work amounts to up to 6.3%.

Towards a Model to Estimate the Reliability of Large-scale Hybrid

Supercomputers

Elvis Rojas, Esteban Meneses Rojas, Terry Jones and Don Maxwell
Download paper from Springer LNCS.

Supercomputers stand as a fundamental tool for developing our

understanding of the universe. State-of-the-art scientific simulations, big

data analyses, and machine learning executions require high performance

computing platforms. Such infrastructures have been growing lately with

the addition of thousands of components, making them more prone to fail.

It is crucial to solidify our knowledge on the way supercomputers fail.

Several recent studies have highlighted the importance of characterizing

failures on supercomputers. This paper aims at modelling component

failures of a supercomputer based on Mixed Weibull distributions. The model

is built using a real-life multi-year failure record from a leadership-class

supercomputer. Using several key observations from the data, we designed

an analytical model that is robust enough to represent each of the main

components of supercomputers, yet it is flexible enough to alter the

composition of the machine and be able to predict resilience of future or

hypothetical systems.

A Learning-Based Approach for Evaluating the Capacity of Data

Processing Pipelines

Maha Alsayasneh and Noel De Palma

Download paper from Springer LNCS.

Data processing pipelines are made of various software components with

complex interactions and a large number of configuration settings.

Identifying when a pipeline has reached its maximum performance capacity

is generally a non-trivial task. Metrics exported at the software and at the

hardware levels can provide insightful information about the current state

of the system, but it can be difficult to interpret the value of a metric, or even

to know which metrics to focus on. Considering a popular pipeline

composed of Kafka, Spark Streaming, and Cassandra, this paper proposes

a learning-based approach to automatically infer the state of such a

pipeline solely by analyzing metrics. Our results show that we are able to

achieve a high prediction accuracy when predicting on new configurations

and when the number of data sources changes. Furthermore, our analysis

demonstrates that the best prediction results are obtained when metrics of

different types are combined.

17:00 - 17:30 Break

17:30 - 18:10

[video]

[video]

[Slack channel]

Theory and Algorithms for Parallel and Distributed Processing (A)

Chairs: Marek Klonowski

Approximation Algorithm for Estimating Distances in Distributed Virtual

Environments

Tobias Castanet, Olivier Beaumont, Nicolas Hanusse and Corentin Travers

Download paper from Springer LNCS.

This article deals with the issue of guaranteeing properties in Distributed

Virtual Environments (DVEs) without a server and without global knowledge

of the system state and therefore only by exchanging messages. This issue

is particularly relevant in the case of online games, that operate in a fully

distributed framework and for which network resources such as bandwidth

are the critical resources. In the context of games, players typically need to

know the distance between their character and other characters, at least

approximately. Players all share the same position estimation algorithm but,

in general, do not know the current positions of others. We provide a

synchronized distributed algorithm Alc to guarantee, at any time, that the

estimated distance between any pair of characters A and B is always a 1 + ε
approximation of the current distance. Our result is twofold: (1) we prove

that if characters move randomly on a d-dimensional grid, or follow a

random continuous movement on up to three dimensions, the number of

messages of Alc is optimal up to a constant factor; (2) in a more practical

setting, we also observe that the number of messages of Alc for actual

game traces is much less than the standard algorithm sending actual

positions at a given frequency.

3D Coded SUMMA: Communication-Efficient and Robust Parallel Matrix

Multiplication

Haewon Jeong, Yaoqing Yang, Christian Engelmann, Vipul Gupta, Tze Meng
Low, Pulkit Grover, Viveck Cadambe and Kannan Ramchandran

Download paper from Springer LNCS.

In this paper, we propose a novel fault-tolerant parallel matrix multiplication

algorithm called 3D Coded SUMMA that is communication efficient and

achieves higher failure-tolerance than replication-based schemes for the

same amount of redundancy. This work bridges the gap between recent

developments in coded computing and fault-tolerance in high-

performance computing (HPC). The core idea of coded computing is the

same as algorithm-based fault-tolerance (ABFT), which is weaving

redundancy in the computation using error-correcting codes. In particular,

we show that MatDot codes, an innovative code construction for

distributed matrix multiplications, can be integrated into three-dimensional

SUMMA (Scalable Universal Matrix Multiplication Algorithm [22]) in a

communication-avoiding manner. To tolerate any two node failures, the

proposed 3D Coded SUMMA requires ~50 % less redundancy than

replication, while the overhead in execution time is only about 5-10 %.

[video]

[video]

[Slack channel]

Performance and Power Modeling, Prediction and Evaluation (B)

Chairs: Arnaud Legrand

A Comparison of the Scalability of OpenMP Implementations

Tim Jammer, Christian Iwainsky and Christian Bischof

Download paper from Springer LNCS.

OpenMP implementations must exploit current and upcoming hardware for

performance. Overhead must be controlled and kept to a minimum to

avoid low performance at scale. Previous work has shown that overheads

do not scale favourably in commonly used OpenMP implementations.

Focusing on synchronization overhead, this work analyses the overhead of

core OpenMP runtime library components for GNU and LLVM compilers,

reflecting on the implementation's source code and algorithms. In addition,

this work investigates the implementation's capability to handle current

CPU-internal NUMA structure observed in recent Intel CPUs. Using a custom

benchmark designed to expose synchronization overhead of OpenMP

regardless of user code, substantial differences between both

implementations are observed. In summary, the LLVM implementation can

be considered more scalable than the GNU implementation, but the GNU

implementation yields lower overhead for lower threadcounts in some

occasions. Neither implementation reacts to the system architecture,

although the effects of the internal NUMA structure on the overhead can be

observed.

Evaluating the Effectiveness of a Vector-Length-Agnostic Instruction Set

Andrei Poenaru and Simon McIntosh-Smith

Download paper from Springer LNCS.

In this paper we evaluate the efficacy of the Arm Scalable Vector Extension

(SVE) instruction set for HPC workloads using a set of established mini-apps.

Exploiting the vector capabilities of SVE will be a key factor in achieving high

performance on upcoming generations of Arm-based processors. SVE is a

flexible instruction set, but its design is fundamentally different from other

contemporary SIMD extensions, such as AVX or NEON, which could present

a challenge to its adoption. We use a selection of mini-apps that covers a

wide range of scientific application classes to investigate SVE, using a

combination of static and dynamic analysis. We inspect how SVE capabilities

are used in the mini-apps' kernels, as generated by all SVE compilers

available at the time of writing, for both arithmetic and memory operations.

We compare our findings against similar data gathered on currently

available processors. Although the extent to which vector code is

generated varies by mini-app, all compilers tested successfully utilise SVE to

vectorise more code than they are able to when targeting NEON. For most

mini-apps, we expect performance improvements as SVE width is

increased.

18:10 - 18:30 Closing (A)



S P ONS OR D E TAI LS

Submission deadline for the

Euro-Pas PhD Symposium has

been extended to 27 May,

2023. Click here for more

information -

https://t.co/wWxisICJSC

17.05.2023 - 11:51

The Euro-Par PhD Symposium

is a welcoming and supportive

forum for PhD students to

present their work. Click here

for more information:

https://t.co/wWxisICJSC

04.04.2023 - 09:25

Submit your paper for EURO-

PAR 2023 Workshops and

Minisymposia! �Click here for

more information.

https://t.co/UEseXWb3Dz

07.03.2023 - 08:18

Abstract submission is due

tomorrow 24 Feb, 2023 �

https://t.co/eH2C9CRZA3

23.02.2023 - 0

https://calendar.google.com/calendar/embed?src=66jtch63ud4imabpbkeua4ej1k%40group.calendar.google.com&ctz=Europe%2FWarsaw
https://calendar.google.com/calendar/ical/66jtch63ud4imabpbkeua4ej1k%40group.calendar.google.com/public/basic.ics
https://link.springer.com/book/10.1007/978-3-030-57675-2
https://www.youtube.com/channel/UCy02_SrXLXfDayAH81kg5ZQ/playlists?view_as=subscriber
https://youtu.be/gBQkJAfrIiw
https://youtu.be/0ORohbckn3k
https://youtu.be/KtBeCnVdPk4
https://euro-par2020.slack.com/messages/t09-multicore/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_30
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_31
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_32
https://youtu.be/EGBXKxdnRDs
https://youtu.be/PctJAe61zKk
https://youtu.be/0J7t5e_LcN4
https://euro-par2020.slack.com/messages/t06-cluster_cloud_edge/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_18
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_19
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_20
https://youtu.be/sC_0Jj-MTJo
https://youtu.be/pMNn7sU6S2g
https://youtu.be/VjXOu5myqjI
https://youtu.be/qH9ma8d_oWU
https://euro-par2020.slack.com/messages/t01-tools_environments/
https://euro-par2020.slack.com/messages/t04-architectures_compilers/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_1
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_2
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_12
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_13
https://youtu.be/Vwl_mENZKY4
https://youtu.be/t5CvTVZvxqQ
https://youtu.be/VEIUcN5yUrk
https://youtu.be/Vrym2kGlYu0
https://euro-par2020.slack.com/messages/t03-scheduling/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_8
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_9
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_10
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_11
https://euro-par2020.slack.com/messages/keynote-ewa_deelman/
https://2020.euro-par.org/program/keynotes/
https://euro-par2020.slack.com/messages/industry-huawei/
https://2020.euro-par.org/program/industry-huawei/
https://youtu.be/cSoMO_3Zwy0
https://euro-par2020.slack.com/messages/t00-best_papers/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_17
https://youtu.be/N0vfOjmrh9g
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_33
https://youtu.be/CNuPrhmeQyw
https://youtu.be/Quu7CYdBlk0
https://youtu.be/piahuqMkFUY
https://euro-par2020.slack.com/messages/t05-data_mgt/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_14
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_16
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_15
https://youtu.be/IAGsaG0_LwU
https://youtu.be/3sgh8C0FLiA
https://youtu.be/F2crIhV70Ys
https://euro-par2020.slack.com/messages/t11-accelerators/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_37
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_38
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_39
https://euro-par2020.slack.com/messages/keynote-geoffrey_fox/
https://2020.euro-par.org/program/keynotes/
https://youtu.be/kWJOxebNoPo
https://youtu.be/CcxrreflgG4
https://youtu.be/rv1owlVs9cU
https://euro-par2020.slack.com/messages/t10-numerical/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_35
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_34
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_36
https://youtu.be/Ac1z3lPyvFs
https://youtu.be/HbXD63-iw-s
https://youtu.be/hyC6oUEzD3k
https://youtu.be/Gc4rdgBz8C4
https://euro-par2020.slack.com/messages/t08-programming/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_26
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_27
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_28
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_29
https://euro-par2020.slack.com/messages/industry-ibm/
https://euro-par2020.slack.com/messages/keynote-piotr_sankowski/
https://2020.euro-par.org/program/keynotes/
https://youtu.be/dYntNGHNJpg
https://youtu.be/J_Yel_3O72M
https://youtu.be/yU2hi9McXnM
https://euro-par2020.slack.com/messages/t07-theory/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_24
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_21
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_22
https://youtu.be/RjNjDgybm-E
https://youtu.be/RfJ6JRyCKxU
https://youtu.be/Y8tC9PLxgRI
https://euro-par2020.slack.com/messages/t02-performance/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_5
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_3
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_4
https://youtu.be/gpkfBAGccLs
https://youtu.be/B4CyAaKS2Qk
https://euro-par2020.slack.com/messages/t07-theory/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_23
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_25
https://youtu.be/75LpVmE6A58
https://youtu.be/oX_SD43qrWA
https://euro-par2020.slack.com/messages/t02-performance/
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_6
https://link.springer.com/chapter/10.1007/978-3-030-57675-2_7
https://2020.euro-par.org/sponsor-details/
https://t.co/wWxisICJSC
https://t.co/wWxisICJSC
https://t.co/UEseXWb3Dz
https://t.co/eH2C9CRZA3
https://2020.euro-par.org/

SHARE ON:

   

https://www.facebook.com/share.php?u=https%3A%2F%2F2020.euro-par.org%2Fde%2Fprogram%2Fconference%2F%3Fpdf%3D1
https://twitter.com/home?status=https%3A%2F%2F2020.euro-par.org%2Fde%2Fprogram%2Fconference%2F%3Fpdf%3D1
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2F2020.euro-par.org%2Fde%2Fprogram%2Fconference%2F%3Fpdf%3D1
mailto:?subject=Take%20a%20look%20at%20this%20site

